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Fig. 1: X’s day. Our approach generates a one-day activity sequence for the virtual human X by integrating personality traits, attributes,
and 3D scene information. The colors representing X range from light to dark, indicating the progression of behaviors over time. Each
green box corresponds to a completed activity. The “ChatWithUser” activity is currently active, during which X is greeting the user,
who can observe and interact with X through the VR headset. Our approach enhances user engagement by providing scene-aware
interactions that reflect distinct personality traits, making virtual humans more relatable and dynamic, with potential applications in
training simulations, educational environments, and social VR experiences.

Abstract—Developing convincing and realistic virtual human behavior is essential for enhancing user experiences in virtual reality (VR)
and augmented reality (AR) settings. This paper introduces a novel task focused on generating long-term behaviors for virtual agents,
guided by specific personality traits and contextual elements within 3D environments. We present a comprehensive framework capable
of autonomously producing daily activities autoregressively. By modeling the intricate connections between personality characteristics
and observable activities, we establish a hierarchical structure of Needs, Task, and Activity levels. Integrating a Behavior Planner and
a World State module allows for the dynamic sampling of behaviors using large language models (LLMs), ensuring that generated
activities remain relevant and responsive to environmental changes. Extensive experiments validate the effectiveness and adaptability
of our approach across diverse scenarios. This research makes a significant contribution to the field by establishing a new paradigm for
personalized and context-aware interactions with virtual humans, ultimately enhancing user engagement in immersive applications.
Our project website is at: https://behavior.agent-x.cn/.

Index Terms—Personality-driven Behavior, Behavior Generation, Contextual Scene

1 INTRODUCTION

Compelling and lifelike virtual human behavior is essential for cre-
ating immersive experiences in virtual reality (VR) and augmented
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reality (AR) [28, 54]. Furthermore, endowing these virtual humans
with distinct personality traits and the ability to reflect various dynamic
influencing factors within 3D scenarios—rather than relying on rigid
behavior patterns can deepen user engagement, satisfaction, and trust
by fostering more relatable and emotional interactions [13, 62]. This is
particularly significant in applications such as virtual training [32, 73],
educational simulations [57], and social VR [28], where personalized
and engaging interactions can positively impact learning outcomes,
skill acquisition, and user satisfaction.

Automatically generating behaviors and actions for virtual agents is
long a research hotspot, attracting significant attention from researchers.
Some researchers explore the generation of high-precision motions
under various conditions, such as actions [36, 60], text [1, 15], au-
dio [30, 34], and scene [39, 66]. Recently, some studies such as [7]



consider psychological personality traits but primarily focus on short-
term interactions, realizing virtual human behaviors through predefined
scenarios and behavior matching. Despite these efforts, some methods
for generating virtual human behaviors and actions still have several
limitations. For instance, they often focus on generating isolated ac-
tions or movements without considering the underlying personality
traits, preferences, and habits of virtual humans [60, 74]. Moreover,
they frequently rely on predefined scenarios [7] and scripts [26], or
rules [9], limiting virtual humans’ flexibility and adaptability in diverse
and dynamic environments.

The recent adoption of LLMs generates significant interest in charac-
ter personalization, particularly in 2D sandbox environments. The vir-
tual sandbox environment provides a visualized and extensible platform
for agent society, bridging the gap between simulation and reality [70].
2D sandbox environments typically adopt an overhead perspective to
simulate agents’ interactions. Examples like AgentSims [38] and Gen-
erative Agents [44] achieve this by integrating comprehensive maps,
agent avatars, and symbolic representations (e.g., emojis) to convey
real-time positions, actions, and states. In these settings, static traits like
background and psychological characteristics are typically conveyed
through natural language and psychological indicators [25, 33, 44, 68].
While LLM-based frameworks in 2D sandboxes show promise, they are
insufficient for VR/AR applications. These frameworks fail to address
the complexities of 3D virtual environments. In 3D scenes, factors
such as a virtual human’s position, orientation, and the scene’s layout
can influence behavior [4, 45, 48], directly impacting user experiences.
These critical aspects are overlooked in 2D frameworks, limiting their
realism and interactivity in virtual reality applications.

To enrich user experiences in VR/AR applications by endowing
virtual agents with distinct and vivid personality traits, we propose au-
tomatically generating virtual humans’ behaviors based on desired per-
sonality attributes and contextual scenes. Achieving this goal involves
addressing two significant challenges. First, modeling the relationship
between personality and daily actions is complex, as personality is a
multifaceted construct influenced by various factors. Similarly, translat-
ing these abstract traits into observable, context-dependent behaviors
presents considerable difficulty. Second, virtual human behaviors must
adapt to dynamic environments, where interactions between the virtual
human and the scene can alter the behavior context.

To tackle these challenges, we introduce a novel framework to dy-
namically generate long-term behavior sequences for virtual humans in
3D environments, effectively reflecting their desired personality traits.
We represent the behavior space as a hierarchical structure comprising
three levels: Needs, Task, and Activity. This explicit representation
facilitates the modeling of complex relationships between activities
and personality traits, providing a clear framework for decision-making
by moving from broader needs to specific activities. Our framework
includes a Behavior Planner module and a World State module that
iteratively generates virtual human behaviors with personality. Initially,
we leverage the Large Language Model (LLM) to generate a sampling
result of the behavior space over a specific personality trait according to
the given personality traits and the 3D scenes; we employ GPT-4-turbo
as the backbone of our LLM. Then, the Behavior Planner utilizes a
Condition Reasoning method and a Behavior Sampling method to se-
lect activities hierarchically from top to bottom, while the World State
module monitors the virtual environment’s status, including historical
activities, time, and scene information. As activities are generated, the
probability distribution over the behavior space is updated in response
to changes in the World State, ensuring that behaviors remain contextu-
ally relevant and adaptive to local circumstances, as well as showing
the desired personality trait. We show a generated example in Fig. 1.

In summary, the contributions of this paper are three-fold:
• We introduce a novel task of generating long-term behaviors for

virtual humans in 3D environments that effectively convey specific
personality traits.

• We develop a framework that can automatically generate human daily
activities in an autoregressive manner. This allows the generated
behaviors to simultaneously reflect the desired personality traits and
adapt to the dynamic 3D environment.

• We conduct extensive experiments to evaluate the efficacy of the
proposed framework thoroughly. Additionally, we demonstrate the
versatility of our approach by applying it across various new applica-
tion scenarios.

2 RELATED WORK

2.1 Representation of Human Daily Activities
Previous research proposes various representations to more accurately
and effectively describe human daily activities. These representations
include vectors, tables, trees, Markov models, and graphs, each capable
of reflecting the diversity and complexity of human behaviors to varying
degrees [11].

Vectors, which provide a simple sequential list, typically use verb
phrases to describe linear and time-series data [55]. Tables, which
employ a schedule template to represent daily behaviors, effectively
manage large datasets of behavior events [22]. Tree structures, which
are another commonly used representation, are particularly suited for
representing hierarchical behavior relationships. Examples include
behavior trees [14, 49] and decision trees [56]. Silverman et al. [53]
develop realistic human behavior models in virtual environments using
tree structures. Markov models [10], which are widely used statistical
models for behavior modeling, capturing temporal dependencies in
behavior sequences through state transitions [63]. Graph structures,
which represent the complex relationships and dependencies between
behaviors through nodes and edges, make them particularly suitable
for representing complex parallel and interactive tasks. Graph struc-
tures that infer human daily activities generally including finite state
machines [31], process mining techniques using graph structures [42],
abstract activity sketches [36], and attribute graphs [2].

By integrating existing representation methods, hierarchical features
effectively capture the complexity and structure of daily human activi-
ties. Specifically, across different hierarchical levels, abstract human
behaviors with inclusive or progressive relationships can be represented,
while within the same level, similar categories are depicted.

2.2 LLM-Based Generative Agent
LLM-based agents designed for simulating human-like behavior are
digital entities capable of replicating human-like interactions and per-
sonalities. In recent years, LLM-based agent systems are primarily
categorized into two main types: Multi-Agent Systems and Single-
Agent Systems.

Multi-Agent Systems enhance LLM functionalities by specializing
them into multiple agents with distinct capabilities. These agents inter-
act with each other to simulate more complex real-world environments,
thus providing advanced functionalities [42]. However, our research
focuses on the Personality-Driven behavior generation and dynamic in-
teraction of a single virtual human rather than the simulation of human
groups within Multi-Agent Systems.

In Single-Agent Systems, the agent’s capabilities are typically di-
vided into three categories: Decision-making Thought, Tool-use, and
Memory [19]. Lin et al. [37] propose a novel agent framework inspired
by the dual-process theory of human cognition in LLM capability en-
hancement. In individual task implementations, Jin et al. [24] develop
a human-like generative driving agent to simulate complex driving
behaviors. Regan et al. [46] study the emotional state evolution of
generative LLM agents when they perceive new events. Shao et al. [51]
construct generative agents capable of assuming specific roles. There
are also studies of generating virtual student profiles and learning be-
haviors [41, 71].

Existing studies demonstrate the powerful capabilities of LLMs with
less emphasis on Personality-Driven behavior generation within 3D
environments. Building on this foundation, we design a novel approach
that fully leverages the capabilities of LLMs while incorporating in-
trinsic and extrinsic factors and dynamic changes to achieve complex,
real-time behavior with personality decisions in 3D environments.

2.3 Personalization of Virtual Human
Virtual humans’ personalization typically manifests in visual appear-
ance and character attributes. Most current research focuses on the



Fig. 2: Overview of framework. (a) The input comprises the virtual human’s personality, attributes, and 3D scene information. We utilize the
Big Five personality traits to represent the personality, while the attributes described by natural language encompass physiological traits, social
characteristics, hobbies, and preferences. The 3D scene information includes scene layout (represented by orange and blue dots), object relations
(indicated by yellow dots), and the spatial positioning of the virtual human and objects. (b) In the generator, the World State continuously monitors
the environmental status, while the Behavior Planner generates activities autoregressively. (c) The output is an activity sequence, with the activity
labeled in blue indicating the current activity, while the others represent completed activities.

personalization of virtual human appearance, covering various aspects
such as facial features [65], stylization [6], animation [3, 40], and full-
body models [8, 47]. Our research primarily focuses on behavioral
personalization, therefore not involving appearance personalization.

Regarding character personalization, current studies typically focus
on defining the “Profile” of the virtual agents, including their personal-
ity traits and relevant attributes information, to facilitate the evolution
and development of interactions within social simulations. Initially,
virtual characters’ personalities are often defined using simple tex-
tual descriptions. For example, several studies [44, 68] use natural
language to initialize each agent’s basic information, attributes, and
simple adjectives to describe their personality traits (e.g., friendly, kind).
Subsequently, some research begins representing virtual character per-
sonalities based on psychological theories, utilizing human personality
assessment tools such as the Big Five model [23, 25, 33] and the MBTI
model [52]. These studies are primarily conducted in 2D sandbox envi-
ronments, where multiple characters are defined randomly or simply
to simulate the evolution and development of different personalities
within a social group.

In related research within 3D environments, some research achieves
personalization by body language [5, 12, 58, 61]. In addition, for the
whole sequence of individual behavior, Cai et al. [7] use the Big Five
personality indicators to introduce guiding instructions for personality
modeling from a small sample of psychological tests. However, their
research primarily focuses on short-term interactions and relies on
predefined scenarios and settings. In contrast, our research enables
the generation of real-time dynamic and long-term Personality-Driven
behavior decisions within 3D environments, allowing virtual characters
to better adapt to users’ personality traits and immediate needs.

3 OVERVIEW

The framework of our approach is outlined in Fig. 2. It incorporates
user-defined personality traits, attributes, and 3D Scene as inputs (Fig.
2 (a)) to develop a Personality-Driven Behavior Generator (Fig. 2 (b)),
which automatically generates sequences of daily activities for virtual
humans (Fig. 2 (c)). Following similar methodologies [25] and [33],
we utilize the Big Five personality traits [16] to represent virtual human
personalities, which encompasses five key dimensions: Extraversion,
Agreeableness, Conscientiousness, Neuroticism, and Openness. These
dimensions delineate individuals’ fundamental characteristics and pre-
dispositions across emotional, behavioral, and cognitive domains. The
attributes of the virtual human are also essential, as these characteristics
influence decision-making and behavioral motivations, enabling virtual
humans to exhibit actions that align with users’ expectations. Consis-
tent with the definition of agent information in other studies [33,44,68],
we allow users to use natural language to describe the virtual human’s
physiological attributes (such as gender, age, height, and weight), social
attributes (such as occupation and educational background), hobbies,
and preferences. These attributes can enhance the believability of the

virtual human, making their actions more appropriate and realistic.
The 3D Scene includes structural information such as the relationships
between objects and rooms and the spatial data of the virtual human
and objects.

The Personality-Driven Behavior Generator consists of two key mod-
ules: World State and Behavior Planner. The generator operates in
an autoregressive manner, producing activities iteratively. Each activity
is informed by the one generated previously, ensuring a coherent and
contextually relevant progression of behavior over time.

The World State is designed to continuously monitor the status of
the virtual environment, providing critical input to the Behavior Planner.
It comprises intrinsic factors that remain static, such as personality traits
and attributes, and extrinsic factors that change dynamically, including
historical activities, time, and scene information. At each iteration, the
World State updates its status based on the previous iteration, ensuring
the behavior sequence remains responsive to external changes.

The Behavior Planner generates activities by leveraging informa-
tion from the World State. To enhance the quality and coherence of
these activities, we employ a large language model (LLM) and adopt
the Chain of Thought (CoT) framework to enable more structured and
reasoned decision-making. The planning process is divided into two
stages: Condition Reasoning and Behavior Sampling. During the
Condition Reasoning stage, the LLM assesses the current World State
to infer contextual conditions. In the Behavior Sampling stage, activi-
ties are hierarchically selected, from high-level goals to more granular
activities, based on the conditions derived in the previous step.

For clarity in this technical discussion, we illustrate our framework
using behaviors within a home environment. However, the framework
can generate diverse, personality-driven activities across various sce-
narios, as Section 7 demonstrates.

4 HIERARCHICAL REPRESENTATION OF HUMAN BEHAVIOR

To facilitate the generation process, we represent human behavior using
a hierarchical structure. This is motivated by the inherent complexity
of human behavior, which is influenced by various potential factors. By
breaking this complexity down into multiple layers, the model provides
a clear framework for decision-making.

We categorize behavior into three layers: Needs, Task, and Activity.
The specific definitions of these three levels are outlined below and
illustrated in Fig. 3.

Needs: The Needs Layer defines fundamental requirements that
humans strive to fulfill. Needs, as outlined in various psychological
theories such as Maslow’s hierarchy [43], drive individuals to pursue
specific goals and actions. Previous studies [53, 72] demonstrate the
utility of Maslow’s needs theory in determining the priority of behav-
ioral motivations. Personality traits significantly influence how these
needs are expressed and prioritized. For example, someone high in



Fig. 3: Hierarchical behavior representation. This representation facili-
tates the generation process, progressing from broad goals to specific
activities, as illustrated by the colorful arrow lines.

extraversion may prioritize social needs and seek relationships and com-
munity, while someone high in conscientiousness might focus more on
achievement-related needs. Thus, we position needs as the top layer.

Due to the abstract nature and long-term impact of esteem and self-
actualization needs, we adopt the approach of [72] to simplify home
activities into three categories: Physiological Needs, Safety Needs,
and Social Needs. These categories effectively capture the motivations
behind daily human behaviors [27] and provide a basis for subsequent
selection.

Task: The Task Layer further refines the Needs Layer, with each
category of needs corresponding to multiple task types that address
specific requirements. We consult three expert psychologists from
research institutions specializing in Cognitive, Personality, and Behav-
ioral Psychology. Utilizing semi-structured interviews and focus group
discussions, we systematically categorize home behavior tasks into
eight types: Repose, Nourish, Work, Study, Housework, Exercise,
Entertainment, and Socialize. These task types align with specific
needs, as Fig. 3 illustrates.

Activity: The Activity Layer provides the most detailed represen-
tation of the Task Layer, defining specific behavioral activities. Each
task type encompasses multiple specific activity options, and the de-
sign of these activities is informed by collected daily behavior data.
The information of the participants and the collection methods for the
collection of daily behavior data are as follows:

We conduct a systematic survey to obtain a representative activity
set that accurately reflects daily human behavior patterns. The ob-
jective is to gather comprehensive information on activities in daily
home environments. A total of 50 participants are recruited, consisting
of 25 females and 25 males, whose ages range from 12 to 70 years
(M = 36.42, SD = 18.64). The participants represent a variety of
occupations, including students, those in the service industry, workers,
professionals, those in corporate management, those in government,
and others (retirees, freelancers, and homemakers).

The data collection process includes both questionnaires and inter-
views, with the latter mainly targeting minors and elderly individuals
who can not complete the questionnaires independently, ensuring the
completeness and accuracy of the data. We gather basic demographic
information and focus specifically on the specific activities participants
may engage in under eight major task categories. Participants are
guided to recall their typical daily behaviors at home and to detail all
possible activities for each task category. After data collection, we
organize and analyze the responses, extracting a comprehensive set
of activities for each task category. The detailed data of participants’
profiles and extracted activity data are presented in supplementary
materials.

5 PERSONALITY-DRIVEN BEHAVIOR GENERATOR

In the Personality-Driven Behavior Generator, there are two critical
modules: World State and Behavior Planner. World State involves
the key factors influencing virtual human behavior to exhibit person-
alized preferences and temporal-spatial rationality. These factors are

integrated into Conditions for Behavior Planner in the Condition Rea-
soning process (Fig. 4) and further used in Behavior Sampling (Fig. 5),
enabling long-term dynamic Personality-Driven behavior generation
for virtual humans.

5.1 World State

The World State module aims to manage the status of the virtual envi-
ronment continuously, providing essential information to the Behavior
Planner module. There are two types of factors in the World State
that influence virtual human behavior: intrinsic factors and extrinsic
factors. The detailed format on the usage of these factors is presented
in supplementary materials.

Intrinsic factors are specified by users and include the personality
and attributes of virtual humans. Recall that we utilize the Big Five
personality traits to represent these personalities. In particular, it in-
cludes five dimensions: Extraversion, Openness, Conscientiousness,
Agreeableness, and Neuroticism. Attributes encompass physiological
characteristics (such as gender, age, height, and weight), social at-
tributes (such as occupation and educational background), and hobbies
and preferences.

Extrinsic factors, on the other hand, are influenced by both indi-
vidual characteristics and spatiotemporal features, including context,
time, and environment, as well as past activities [4, 18, 50, 64]. Based
on these insights, we define time, completed activities, and 3D scene
information as extrinsic factors. These elements enhance the timeliness
and contextual appropriateness of virtual human behaviors, improving
the adaptability of activities with personality across various scenarios.

In particular, time refers to the current timestamp experienced by the
virtual human, which assists the language model (LLM) in assessing the
urgency and suitability of tasks, influencing the selection of activities.
Completed activities represent all the virtual humans completed up to
now. These historical events function similarly to the memory module
described in [44].

Regarding the 3D Scene, we focus on three main components:
SceneDescription, AgentInfo, and ObjectInfo. SceneDescription de-
scribes the structural information of the 3D environment where the
virtual agent is located. It includes the containment relationships be-
tween Rooms, Places, and Objects and the connectivity relationships
between different Places. Similar to [17], we adopt Dynamic Scene
Graphs (DSG) to represent 3D scenes, parsing DSG into natural lan-
guage descriptions, thus providing contextual information about the
environment. The implementation of DSG we make is presented in
supplementary materials. AgentInfo indicates the current location of
the virtual human, while ObjectInfo describes the shortest navigable
paths and distances between all objects and the virtual human.

Upon completing a generated activity in each iteration, the factors in
the World State will be updated accordingly. Specifically, for time, the
duration of the activity will be added to the current timestamp. For the
set of Completed Activities, the latest generated activity, along with its
configuration, such as the time of the activity and the interacted objects,
will be recorded. Regarding the 3D Scene, the position of the virtual
human will be updated in AgentInfo, while the interacted objects will
be updated in ObjectInfo. Consequently, SceneDescription will also be
modified to reflect these changes.

5.2 Behavior Planner

The Behavior Planner is the core module responsible for generating
activities by leveraging information from the World State module. It
primarily consists of two stages: Condition Reasoning and Behavior
Sampling. They are used to infer contextual conditions and behavior-
selecting processes. To illustrate the generation process, we use the
first activity of a virtual person in the morning as an example for one
planning iteration in Fig. 4 and Fig. 5.

The consideration of using two stages rather than relying solely on
simple function evaluations for behavior selection is that we employ
the idea of the Chain of Thought (CoT) [69] to enable more reasonable
decision-making. In the Condition Reasoning phase, the LLM eval-
uates the current state of the world to deduce the relevant contextual



Fig. 4: Example of Condition Reasoning process. Q denotes the input
provided to the large language model (LLM) at the current step, while R
represents the response generated by the LLM. The dashed box labeled
“Symbol Definition” explains the symbols’ meanings.

conditions. Following this, in the Behavior Sampling phase, activi-
ties are selected hierarchically, progressing from broad goals to more
specific activities, all guided by the conditions identified in the earlier
stage. This design enhances the framework’s ability to effectively adapt
behavior to the context. For prompt engineering, our designed prompts
are based on JSON templates and, in line with CoPB [50], adopt the
CoT approach to enhance reasoning capabilities.

Condition Reasoning: To derive the necessary conditions from
the information in the World State, the Behavior Planner employs the
LLM to reason through several vital considerations. First, based on
the personality traits, the LLM is queried to identify the personality
characteristics of the virtual human according to specific scores across
the five personality metrics. Regarding attribute information, the LLM
generates insights into the behavioral tendencies, daily preferences,
and personal habits typical of individuals with these attributes in a
home environment. Time information and completed activities are
incorporated as extended instructions. For the 3D Scene, the LLM
extracts the scene description, the current position of the virtual human,
all object information within the scene, and the shortest navigable
distances between the objects and the virtual human. Fig. 4 illustrates
an example of the Condition Reasoning process.

Behavior Sampling: Guided by the detailed conditions, we
further request the LLM to predict selection probabilities to facilitate
specific node selection in each layer. The element with the highest
probability in each layer will be chosen. Fig. 5 demonstrates the
detailed prompt and conditions. The processes for each layer are as
follows:

For Needs, we adopt the first three levels of Maslow’s hierarchy
of needs, with each need’s intensity dynamically changing over time.
The research by Yuan et al. [72] captures the dynamic nature of needs,
primarily manifest as two dynamic processes: “Spontaneous Flow” and
“Instantaneous Jump.” In our work, we incorporate dynamic processes
and use LLM to predict needs changes and the subsequent need levels
to be fulfilled with information. The LLM assesses the urgency of the
three needs based on the current need intensity, categorizing them into
selection probability.

For Task under corresponding needs, we use all conditions except
for the 3D Scene to predict the execution probabilities of each task
element.

For Activity under the corresponding task type, we use all conditions
to predict the execution probabilities of Activity Layer elements. After
selecting the activity with the highest probability, these predictive
variables are also as combined inputs to predict the object most likely
to be selected to complete this activity, along with an estimate of the
required time.

Fig. 5: Behavior Sampling process. We use the first activity of a virtual
person in the morning as an example for one iteration. Q denotes the
input provided to the LLM at the current step, while R represents the
response generated by the LLM. The result after sampling in each layer
is pointed out by the blue arrow. The symbols’ meanings are in the
dashed box labeled “Symbol Definition” in Fig. 4

6 RESULT AND EXPERIMENT

Our work aims to enable virtual humans to dynamically generate long-
term behaviors that align with their personality traits and attribute
information within a given 3D scene based on their current state. To
validate the effectiveness of this framework, we analyze the results
generated by virtual humans with opposite personality traits in different
scenes and experiment with a user study.

6.1 Behavioral Results with Notable Individual Differences
in Different Scenarios

In this experiment, we concentrate on two key personality traits, “Open-
ness” and “Conscientiousness,” for the analysis. Our method is applied
to two distinct 3D home environments, defining two contrasting per-
sonality types for each trait (e.g., high vs. low openness, high vs. low
conscientiousness, high score is 100, low score is 0, and the other
factors in World State are all the same), resulting in two groups of
personality combinations. Subsequently, behavior sequences of virtual
humans exhibiting these four distinct personalities are predicted in two
scenes over an entire day.

As shown in Fig. 6, the experiment generates eight behavior se-
quences corresponding to different personality and scene combinations.
We define the same Attributes of the four types of virtual human per-
sonalities as: “A computer science student with hobbies that include
home exercise, music, and singing”. From Fig. 6, which depicts the
overall behavioral trajectories of Scene 1 and Scene 2, we observe that
as the complexity of the scene increases and the number of interactive
objects grows, the personality traits of virtual humans become more
pronounced in their behaviors.

Virtual humans with High-Openness traits tend to explore a diverse
range of activities without adhering to a fixed pattern in object selection.
For example, in Scene 1, they engage in activities 3, 5, and 6 on
different computers, demonstrating that the proximity of objects does
not influence their choice of activities. In contrast, virtual humans
with Low-Openness traits clearly prefer familiar activities and objects,
repeatedly engaging in specific actions across both scenes. In Scene 1,
for instance, they play PC games on the same computer during activities
2 and 4, while in Scene 2, they repeatedly use the same mobile device
to listen to music for rest during activities 2, 4, and 7.

Virtual humans with High-Conscientiousness traits exhibit more
structured and consistent behavior, often choosing activities that re-



Fig. 6: Generated behavior sequences. Examples of generated behavior sequences illustrate four distinct personalities across two scenes. The
activity sequences in Scene 1 represent afternoon and evening activities, while those in Scene 2 depict morning activities. The virtual human
performs various activities (shown in blue boxes) sequentially (indicated by the numbers), interacting with different objects (represented by red
circles). The dashed line with an arrow indicates the path to the following activity location. An activity may occur multiple times, resulting in multiple
red circles with different numbers within a single blue box.

quire planning and effort, such as studying or exercising. The activity
path information in the figure reveals that these individuals prefer ob-
jects closer to proximity when selecting tools for their tasks. In contrast,
virtual humans with Low-Conscientiousness traits display less struc-
tured activity patterns, favoring rest and leisure activities. They are
often easily distracted during tasks, as demonstrated in Scene 2, where
the “Practice Programming” in activities 5, 7, and 9 is interrupted by
other activities, such as activities 6 and 8.

The results reveal significant differences in behavior choices, activity
sequences, and scene interactions with objects chosen among virtual
humans with different personalities. These results indicate that our pro-
posed framework can generate distinct long-term behaviors for virtual
humans based on different personalities and scenarios. Moreover, the
choice and order of behaviors, objects chosen, and types of activities
vary significantly across personality traits, highlighting that personal-
ity characteristics profoundly influence the daily behavior patterns of
virtual humans.

6.2 User Study

We conduct a user study through experiments to validate the effective-
ness of our framework from the perspectives of general users. This
study aims to explore the impact of factors in World State and the
Needs that serve as the primary driving force for activity selection
within our framework on the behavior generation process, as well as
to evaluate the rationality and personality with preference alignment
of the generated behaviors. Detailed visualization and data collection
results are presented in supplementary materials.

According to the experimental requirements of our institute, we con-
duct relevant data collection and user study. Furthermore, all data are
collected with prior informed consent, and all results are anonymized
and presented with the explicit consent of the participants who con-
tribute to this section and the collection of behavior data in Section
4.

6.2.1 Experiment Settings

Participants: For the general user group, we recruit 14 partici-
pants, including seven females and seven males, aged between 14 and
55 (M = 30.50, SD = 10.53), covering various occupational back-
grounds and diverse educational and social backgrounds. All partici-
pants have no impairments in reading text or watching videos. Detailed

information regarding the attributes of the participants is provided in
the supplementary materials.

Compared methods: To evaluate the influence of each condi-
tion on virtual human behavior generation, we design the experiment
with seven combinations of comparative methods. By systematically
removing or retaining specific conditions, we analyze the critical role
of these factors in behavior generation. The comparison approaches
include: (1) Ours, without removal. (2) Sandbox, adopting the method
similar to other existing agent simulation of 2D sandbox [33, 44] with
Memory, Planning, and Reflection. Note that in the Sandbox Method,
similar to these sandbox simulations, an initial daily plan is generated
at the beginning, followed by subsequent decomposition and real-time
planning updates as activities are completed. In Ours and the following
methods (3)-(7), there is no initial full-day activity planning; instead,
a new activity is generated in each generation round. (3) W/O Time,
removal of time. (4) W/O Event, removal of completed activities.
(5) W/O Need, removal of the needs of virtual human. (6) W/O PA,
removal of Personality and Attributes. (7) W/O 3D, removal of 3D
Scene.

Data: Initially, we gather Personality and Attributes data from 14
participants. Personality traits are quantified using the enhanced BFI-2
scale [59], which assesses the Big Five personality traits through five
scores and requires approximately five minutes to complete. Attributes
data encompass physiological characteristics (e.g., gender, age, height,
weight), social attributes (e.g., occupation, educational background),
and personal interests. Leveraging each participant’s Personality and
Attributes information, we employ seven comparative methods to gen-
erate seven distinct behavior sequences for virtual humans, simulating
a full day of activity for each participant. This process results in 14
groups and 98 behavioral sequence outputs.

Procedure: Each participant is asked to evaluate seven behavior
sequence results generated using the comparative methods based on
their Personality and Attributes. The results are presented through
videos, and the evaluation takes approximately 15 minutes. The order
of the seven different methods is randomized within each group. After
observing each result, participants complete a five-point Likert scale
(1 = “strongly disagree,” 5 = “strongly agree”) based on the following
two criteria:

1) Behavior Rationality: Does the virtual human’s behavior ex-
hibit temporal and spatial coherence and conform to typical human



Fig. 7: Visualization of behavior sequence. Visualization of a par-
ticipant’s generated behavior sequence under seven conditions. The
Big-Five personality scores are {O-69, C-38, E-75, A-58, N-17} and At-
tributes are “Male, 24 years old, 170 cm tall, weighing 90 kg, currently
a student with a bachelor’s degree. His hobbies include playing video
games, and his unique habit at home is lying down.”. Each sequence
consists of a period of time, and each activity is shown by one color.

behavioral patterns?
2) Personality Alignment: Based on your judgment, does the virtual

human’s behavior preference resemble yours?
Participants are not explicitly informed of the methods used to gen-

erate each result during the experiment. To manage the high volume of
daily behavior instances, which ranges from approximately 30 to 50
entries per day, and to enhance readability, facilitate intuitive judgment,
and reduce the time required for user scoring, each day is divided into
three distinct periods: 9:00–14:00, 14:00–19:00, and post–19:00. The
14 participants are evenly distributed into three groups based on age
and gender, with 5 participants assigned to period 1, 5 to period 2, and
4 to period 3. Each group maintains a balanced gender ratio of approxi-
mately 1:1 and includes at least one participant from each age category,
ensuring an even distribution of age demographics across the three time
periods. Each group evaluates the behavior sequences of participants
within its designated time segment for a given day. Fig. 7 illustrates
an example of a generated behavior sequence for a participant. Please
refer to the supplementary materials for all other results.

6.2.2 Statistical Analysis
To evaluate the impact of different methods on the scores, we employ
the Friedman test to analyze the statistical significance of user ratings.
Additionally, to further clarify the differences between methods, we
use the Wilcoxon Signed-Rank Test with Bonferroni correction for
pairwise comparisons of the ratings.

User Rating Analysis for Behavior Rationality: Fig. 8
shows the visualization of the participants’ ratings using box plots.
The results of the Friedman test indicate significant differences in user
ratings across seven compared methods of Behavior Rationality (χ2 =
51.09, p < 0.05,df = 6) at the α = 0.05 significance level. A post-
hoc test using Wilcoxon Signed-Ranks Test with Bonferroni correction
(at the correlated significance level of α = 0.007) reveals a significant
difference that the mean rating of Ours (without any removal, M =
4.36, SD = 0.63) is statistically higher than that of the W/O Time
(time removal, M = 2.21, SD = 0.89) (W = 0, p < 0.007, r = 0),
W/O Event (completed activities removal, M = 3.00, SD = 1.24)
(W = 7.00, p < 0.007, r = 1.87), W/O Need (needs-driven removal,
M = 2.36, SD = 0.92) (W = 2.00, p < 0.007, r = 0.53), and
W/O 3D (3D Scene removal, M = 2.00, SD = 0.96) (W = 0, p <
0.007, r = 0). Moreover, the post-hoc test does not find any significant
difference between Ours’ mean rating and Sandbox’s and W/O PA’s.

Further statistical analysis of the results reveals that, for the Behavior
Rationality of the virtual human’s behaviors as represented by the

Fig. 8: Box plots of Behavior Rationality. The box plots of the par-
ticipants’ ratings on the behavior sequences’ Behavior Rationality in 7
different conditions. The bottom and top edges of the box represent the
25th and 75th percentiles, respectively. The horizontal line, depicted in
orange, represents the median rating. The whiskers extend to the most
extreme data points. Hollow circles indicate outlier ratings.

activity sequences, participants rate the activities’ reasonableness highly
when all components and variables are included in Ours.

Compared to the method analogous to the 2D sandbox approach, no
significant difference is observed between the Sandbox method and our
approach regarding perceived reasonableness. This is attributable to the
Sandbox method’s initial comprehensive planning of the entire day’s
activities, which establishes a robust temporal structure. Subsequent
activities are then allocated by segmenting this initial plan into discrete
time intervals, with dynamic adjustments to the overarching schedule
as needed. Conversely, apart from the Sandbox method, Ours and other
methods do not rely on exhaustive pre-planning. Instead, they predict
activities in real-time before each action’s commencement, showcasing
our approach’s high adaptability and dynamic nature. Despite the
absence of a predefined daily plan, our framework maintains a high
degree of behavioral rationality.

Excluding Personality and Attributes in W/O PA does not result in
significant differences compared to our approach, suggesting that the
generated sequences of human daily behavior retain a certain level of
rationality even without these factors. This indicates that psychologi-
cal personality traits, along with individual physiological, social, and
interest-related attributes, have a limited impact on the rationality of
the generated behavior.

In contrast, significant differences in perceived reasonableness
emerge when temporal information (W/O Time), completion status
(W/O Event), human needs (W/O Need), and 3D scene context (W/O
3D) are omitted compared to our entire framework. This finding sug-
gests that these four factors are essential for ensuring the rationality of
activities. For example, the appropriateness of an activity at a given
time, the avoidance of repeating certain activities after completion, and
the contextual relevance of objects used in specific scenarios are all sig-
nificantly influenced by the inclusion or exclusion of these conditions.

User Rating Analysis for Personality Alignment: Fig. 9
shows the visualization of the participants’ ratings using box plots.
The results of the Friedman test indicate significant differences in
user ratings across seven compared methods of Personality Align-
ment (χ2 = 23.97, p < 0.05, df = 6) at the α = 0.05 significance
level. A post-hoc test using Wilcoxon Signed-Ranks Test with Bon-
ferroni correction (at the correlated significance level of α = 0.007)
reveals a significant difference that the mean rating of Ours (with-
out any removal, M = 3.64, SD = 0.93) is statistically higher
than that of the W/O Time (time removal, M = 1.93, SD = 1.14)
(W = 0, p < 0.007, r = 0) and W/O PA (Personality and Attributes
removal, M = 2.14, SD = 0.94) (W = 0, p < 0.007, r = 0). More-
over, the post-hoc test finds no significant difference between the other
methods.



Fig. 9: Box plots of Personality Alignment. The box plots of the
participants’ ratings on the behavior sequences’ Personality Alignment in
7 different conditions. The bottom and top edges of the box represent the
25th and 75th percentiles, respectively. The horizontal line, depicted in
orange, represents the median rating. The whiskers extend to the most
extreme data points. Hollow circles indicate outlier ratings.

Based on the aforementioned statistical results, significant differ-
ences are observed only when Time, Personality, and Attributes are
excluded, compared to our complete framework. At the same time,
other conditions do not exhibit substantial variations. This suggests
that the factors of Personality, Attributes, and Time have a pronounced
personalized impact on overall behavioral sequences. In contrast, other
variables exert relatively minimal influence on the comprehensive be-
havioral pattern.

We meticulously label all object names to further investigate per-
sonalization aspects between our complete framework Ours and the
sandbox-like method Sandbox. Under both methods, we provide de-
tailed path information of the virtual agents’ activity sequences within
each time segment. Additionally, we highlight the available object
options generated at the onset of each new activity and the final choices
made by the virtual agents.

Our analysis reveals that virtual agents consistently select the same
objects under the Sandbox approach when performing identical activi-
ties. In contrast, under our complete framework, object selection varies
following the virtual agents’ personality traits, as influenced by the 3D
Scene context. For instance, highly conscientious and neurotic agents
tend to choose the nearest and least effortful objects. In contrast, those
with high openness are inclined towards selecting objects that are more
distant but perceived as more attractive or novel.

Participants are then asked to evaluate which object preferences
better align with their characteristics across the two conditions. The
results indicate that 11 participants (78.6%) perceive the preferences
generated by Ours as more closely matching their inclinations. This
finding suggests that our approach captures general preference patterns
and demonstrates personalized object selection, thereby enhancing
personalization in virtual agent behavior.

6.2.3 User Feedback

In this study, we collect and analyze user feedback on the generated vir-
tual human behavior sequences, tailored according to their personality
and attributes, yielding several key insights:

For groups with higher rationality scores, participants generally
perceive the activities as well-aligned with typical daily routines, ex-
hibiting appropriate timing, location, and diversity. Conversely, lower
rationality scores are attributed to misaligned activity timing, inap-
propriate venue or object selection, and sequences that deviate from
normative human behavior. A lack of activity diversity or repetitive
execution of essential activities like eating also contributes to lower
ratings.

For groups with higher personality alignment scores, participants
report that the activity choices and sequences closely mirror their behav-
iors, with completion times reflecting their habits, thereby enhancing

Fig. 10: Applicaitons in VR (a) and AR (b) scenario.

alignment with individual preferences. In contrast, lower personality
alignment scores are often linked to unique personal habits or uncon-
ventional preferences that are not strictly personality-driven. Examples
include skipping dinner due to dieting, avoiding TV dramas, or having
irregular meal times.

7 APPLICATIONS

To demonstrate the practical applicability and scalability of our
Personality-Driven Behavior Generation Framework for virtual hu-
mans, we expand its implementation to VR and AR environments
and apply it across diverse application domains, including healthcare,
education, and games.

7.1 Application in VR and AR Scenarios
Our approach effectively extends to VR and AR environments, enabling
virtual humans to perform in realistic interactive scenarios. Virtual
humans can engage with objects in the virtual environment and directly
interact with users.

As depicted in Fig. 10 (a), the virtual human’s current activity shifts
from “Read” to “ChatWithUser.” The user’s position and the forward
vector are obtained in real-time via VR devices and integrated into
the 3D Scene. When the virtual human enters the user’s interaction
radius, two potential actions are generated based on its personality
traits: interacting with the user or continuing its current activity. We
define three specific activities—“Chat with the user,” “Accompany the
user,” and “Provide information and displays,” organized under the
“Socialize” Task Layer. During behavior execution, the virtual human
dynamically adjusts interactions based on real-time user data, ensuring
responsive and context-aware engagement.

Fig. 10 (b) illustrates virtual human applications in AR environments,
where real-world scenes are scanned and reconstructed into 3D scenes
represented by the DSG structure. Here, the virtual human, guided by
real-world context, can exhibit personalized behaviors, as represented
by the three colored circles denoting Room, Place, and Object Nodes
in the scene.

7.2 Applications of Healthcare, Education, and Games
To further illustrate the diversity of our approach, we extend the virtual
human behavior generation framework to public settings such as health-
care, education, and games by setting predefined personality traits and
attributes for different roles.

In Healthcare scenarios, virtual humans can function as healthcare
providers, generating activities showing traits such as caregiving or
consultation based on role-specific requirements. Fig. 11 (a) displays
sequences of virtual humans acting as a doctor who “enjoys conversing
with patients and shows significant concern for their conditions” in the
natural hospital setting in an AR environment, demonstrating the ability
to adapt flexibly to dynamic changes.

In Education scenarios, virtual humans can take on the roles of
teachers, dynamically selecting behaviors such as teaching, discussing,
or guiding based on their personalities and contextual settings. Fig.
11 (b) shows demonstrations of virtual human acting as “A teacher
who enjoys discussing with students and has an outgoing personality”,
adapting interaction styles according to the classroom atmosphere and
the assigned personality traits.

Our approach also applies in Gaming environments, where it gen-
erates Personality-Driven behaviors for non-player characters (NPCs).



Fig. 11: Applications of Healthcare (a), Education (b), and Games (c).
The characters’ colors, from light to deep, indicate the order of behaviors.

Fig. 11 (c) depicts a virtual character functioning as an NPC in games.
As shown in Fig. 11 (c), NPCs with different personalities can gen-
erate behavior consistent with their respective traits (combining the
Personality and Attributes features, the character in the bottom-left
image is defined as a “silent and cautious guard,” while the character
in the bottom-right image is described as a “lively and communicative
mage.”). This implementation infuses NPCs with greater personaliza-
tion and interactivity, transforming them from simple pre-set roles into
intelligent entities with dynamic behaviors.

These extended applications demonstrate our proposed Personality-
Driven behavior generation method’s broad applicability for virtual
humans across multiple domains, including VR and AR applications
in education, healthcare, and gaming. Virtual characters based on our
method can adapt to diverse environments and generate contextually
appropriate behaviors consistent with predefined Personalities and At-
tributes, providing innovative solutions for future virtual interactions,
personalized services, and immersive experiences.

8 DISCUSSIONS

We discuss the limitations of our Personality-Driven behavior genera-
tion method and propose directions for future enhancements. By criti-
cally examining the current constraints and identifying opportunities
for improvement, we aim to advance the realism, adaptability, and user
engagement of virtual human interactions in immersive environments.

8.1 Limitations

While our framework demonstrates promising results in generating
long-term, personality-driven behaviors for virtual humans, several
limitations warrant further exploration.

Firstly, the framework lacks advanced low-level motion generation
techniques, constraining its applicability to highly interactive environ-
ments. The current approach primarily focuses on behavior-level gen-
eration, producing action sequences based on predefined labels rather
than ensuring realistic motions or strict adherence to spatial constraints
within the scene. We rely on corresponding animations to represent
activities to facilitate clear and intuitive visualization of behavior se-
quences. However, users may perceive the avatar’s motions as lacking
fluidity or naturalness, potentially reducing immersion. The reliance
on predefined gestures further limits adaptability in scenarios requiring
varied and complex gestures, thereby affecting the believability and
expressiveness of virtual humans in dynamic settings. Enhancing the
framework with sophisticated motion generation techniques is critical
to addressing this limitation and improving the naturalism of virtual
human behaviors.

Secondly, although our framework supports continuous long-term
generation through iterative updates, it faces challenges stemming
from the lack of persistent memory mechanisms in LLMs [20]. Over
extended periods, the accumulation of generated data may lead to
progressive homogenization, undermining the diversity and spontaneity
of virtual human behaviors. This poses a challenge to maintaining
authentic and engaging interactions over time.

Additionally, some activities generated by the framework may ap-
pear peculiar or inconsistent with user expectations. This issue arises
from the black-box nature of LLMs, which limits precise control over
inference outputs. Consequently, behaviors occasionally deviate from
expected norms, potentially disrupting user immersion and the believ-
ability of virtual agents. Future work should incorporate additional
constraints or validation mechanisms to reduce such anomalies.

Finally, the framework depends on predefined personality attributes
and fixed mappings of psychological traits, which may not fully capture
the nuanced variations in human behavior across diverse contexts. This
rigidity will limit the personalization and contextual relevance of gen-
erated behaviors. Integrating more flexible and data-driven methodolo-
gies is essential to enhance the framework’s ability to model complex,
context-specific personality-driven behaviors accurately.

8.2 Future Work
Several promising avenues remain to enhance the proposed method’s
realism, adaptability, and applicability across diverse contexts.

Enhancing the realism of motions and their integration within 3D
scenes is a critical direction. Future research can explore advanced
low-level motion generation techniques and tighter 3D environment
integration, such as combining approaches like [21, 29, 67]. These
advancements will enable more fluid and lifelike activities, thereby
enhancing the immersive experience in VR/AR settings.

Developing adaptive, data-driven personality models presents an-
other key opportunity. Future studies can collect data from broader
populations and varied sources to ensure that behavior generation is
diverse and representative. Incorporating approaches that infer person-
ality traits from diverse datasets will allow the framework to capture a
broader range of behavioral nuances, resulting in more personalized and
contextually relevant interactions. Exploring memory mechanisms or
diversity-promoting algorithms is recommended to sustain behavioral
diversity during continuous generation.

Lastly, conducting real-world deployments and improving environ-
mental perception such as [35] is vital. Integrating the framework
into existing VR/AR applications and performing empirical validations
through user research will provide valuable feedback for refinement.
Additionally, incorporating advanced sensing technologies and spatial
mapping will enable virtual agents to interpret and respond to envi-
ronmental changes more effectively, resulting in more contextually
appropriate behaviors.

9 CONCLUSION

This paper introduces a comprehensive framework for generating
Personality-Driven behaviors in virtual humans, utilizing advanced
long-term and dynamic decision-making techniques within 3D environ-
ments. By incorporating a hierarchical behavior structure, a Behavior
Planner, and a World State module, our approach proficiently models
long-term, context-aware behaviors that align with individual person-
ality profiles while maintaining temporal and spatial coherence. The
demonstration across various VR/AR applications in diverse 3D home
environments and extended use cases such as healthcare, education, and
gaming demonstrates the robustness and adaptability of our method.
These results underscore the potential of personality-driven virtual
agents to facilitate authentic and engaging interactions, delivering sig-
nificant value across applications ranging from virtual companions to
dynamic NPCs.
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